Laboratório de Engenharia Química I Aula Prática 06

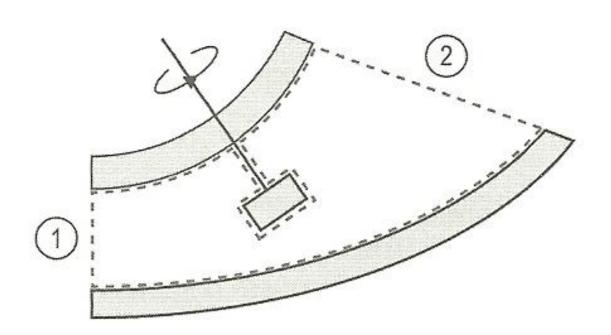
Determinação da perda de carga total e da potência de uma bomba centrífuga

Prof. Dr. Gilberto Garcia Cortez

1- Introdução

Nesta experiência iremos determinar a potência de uma máquina motriz (bomba centrífuga) a partir da equação da energia mecânica em regime permanente, utilizando um sistema hidráulico constituído de tubulações e acessórios e estudar os efeitos das perdas de carga em escoamentos internos de um fluido (água) incompressível.

Objetivos:


- Determinar a potência de uma bomba centrífuga a partir da vazão volumétrica e das perdas de carga distribuída e localizadas na linha de sucção e recalque de um sistema hidráulico constituído de um tanque de água, tubulações e acessórios.

2- Considerações de energia no escoamento em tubos

Num escoamento sem atrito (fluido ideal), a equação de Bernoulli poderia ser utilizada para calcular os efeitos das variações de elevação e velocidade em um linha de tubulação sem a presença de acessórios, válvulas ou máquinas motrizes (bombas ou turbinas). No caso de escoamento reais, a preocupação principal são os efeitos do atrito na linha de tubulação. Estes "atritos" provocam a queda de pressão, causam uma diminuição na velocidade do escoamento, quando comparado com o caso do escoamento ideal ou sem atrito. A partir da equação da energia, é possível obter esclarecimentos adicionais sobre a natureza das perdas por pressão, nos escoamentos viscosos internos e incompressível.

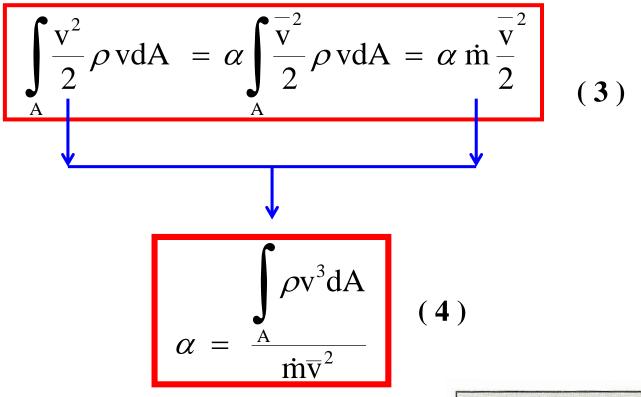
$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} - \dot{\mathbf{W}}_{cis} - \dot{\mathbf{W}}_{outros} = \frac{\partial}{\partial t} \int_{VC} e\rho dV + \int_{SC} \left(\mathbf{u} + \frac{\mathbf{P}}{\rho} + \frac{\mathbf{v}^{2}}{2} + gh \right) \rho \vec{\mathbf{v}} . d\vec{\mathbf{A}}$$
(1)

Considere, por exemplo, o escoamento permanente através de um sistema de tubos, incluindo uma curva com expansão, como mostrado na figura a seguir. Entre as superfícies 1 e 2 existe uma máquina motriz. As fronteiras do volume de controle são mostradas como linhas tracejadas. Elas são perpendiculares ao escoamento nas seções 1 e 2 e coincidem com as superfície interna nas outras partes.

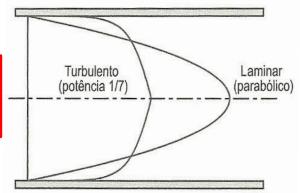
Considerações:

- 1) Escoamento permanente;
- 2) Fluido incompressível, ρ = cte;
- 4) As áreas de SC em (1) e (2) são perpendiculares à velocidade;
- 5) Não há outros trabalhos;
- 5) Energia interna e pressão são uniformes através das seções de entrada e saída.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} - \dot{\mathbf{W}}_{cis} - \dot{\mathbf{W}}_{outros} = \frac{\partial}{\partial t} \int_{VC} e\rho dV + \int_{SC} \left(\mathbf{u} + \frac{\mathbf{P}}{\rho} + \frac{\mathbf{v}^{2}}{2} + gh \right) \rho \vec{\mathbf{v}} . d\vec{\mathbf{A}}$$


$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \int_{SC} \left(\mathbf{u} + \frac{\mathbf{v}^{2}}{2} + \mathbf{gh} + \frac{\mathbf{p}}{\rho} \right) \rho \vec{\mathbf{v}} . d\vec{\mathbf{A}}$$

$$\dot{\vec{Q}} - \dot{\vec{W}}_s = \int_{SC} u \rho \vec{v}. d\vec{A} + \int_{SC} gh \rho \vec{v}. d\vec{A} + \int_{SC} \frac{p}{\rho} \rho \vec{v}. d\vec{A} + \int_{SC} \frac{v^2}{2} \rho \vec{v}. d\vec{A}$$


$$\dot{Q} - \dot{W}_{s} = (u_{2} - u_{1})\rho vA + (h_{2} - h_{1})g\rho vA + \left(\frac{p_{2}}{\rho} - \frac{p_{1}}{\rho}\right)\rho vA + \int_{A_{2}}^{2} \frac{v_{2}^{2}}{2}\rho vdA_{2} - \int_{A_{1}}^{2} \frac{v_{1}^{2}}{2}\rho vdA_{1}$$

 $\dot{m} = \rho vA$ (vazão em massa)

O coeficiente de energia cinética, a, é definido como:

Para escoamento laminar em um tubo, $\alpha = 2$ Para escoamento turbulento em um tubo, $\alpha \approx 1$

$$-\frac{\delta W_{s}}{dm} = \left(\frac{p_{2}}{\rho} + \frac{\alpha_{2}\overline{v_{2}}^{2}}{2} + h_{2}g\right) - \left(\frac{p_{1}}{\rho} + \frac{\alpha_{1}\overline{v_{1}}^{2}}{2} + h_{1}g\right) + \left[\left(u_{2} - u_{1}\right) - \frac{\delta Q}{dm}\right]$$

Perda de carga total

$$\mathbf{h}_{\ell \mathrm{T}} = \left| \left(\mathbf{u}_{2} - \mathbf{u}_{1} \right) - \frac{\partial \mathbf{Q}}{\mathrm{dm}} \right|$$

$$-\frac{\delta W_{s}}{dm} = \left(\frac{p_{2}}{\rho} + \frac{\alpha_{2}\overline{v}_{2}^{2}}{2} + h_{2}g\right) - \left(\frac{p_{1}}{\rho} + \frac{\alpha_{1}\overline{v}_{1}^{2}}{2} + h_{1}g\right) + h_{\ell T} \qquad (2)$$

O termo $\frac{p}{\rho} + \frac{\alpha \overline{v}^2}{2} + hg$ representa a energia mecânica por unidade de massa numa seção.

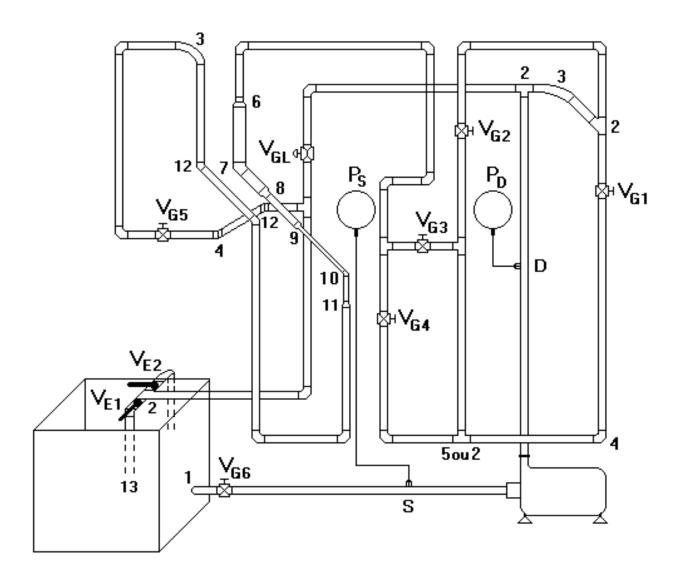
O termo $(u_2-u_1)-\frac{\partial Q}{dm}$ é igual à diferença de energia mecânica por unidade de massa entre as seções 1 e 2. Este termo representa a conversão (irreversível) de energia mecânica na seção 1 em energia térmica indesejada (u_2-u_1) e perda de energia através de transferência de calor $(-\frac{\partial Q}{dm})$. Identificamos este grupo de termos como perda de carga total, $h_{\ell T}$, na linha da tubulação (acessórios + tubos).

O termo $\frac{\partial W_s}{dm}$ é o trabalho adicionado ou recebido pela máquina motriz (bomba ou turbina).

A equação 2 pode ser escrita para sistemas que contêm bomba na linha:

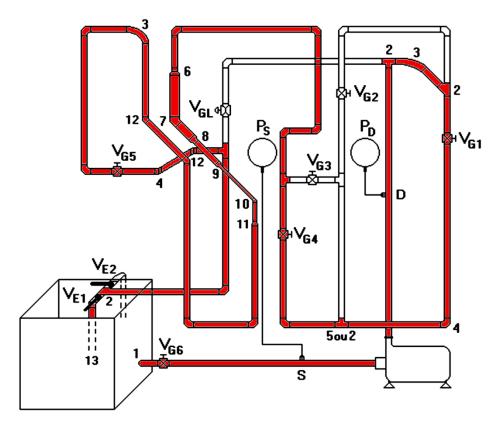
$$\frac{\delta W_{s}}{dm} = -\frac{\delta W_{B}}{dm}$$
 (3)

É o trabalho mecânico fornecido pela bomba para o fluido


$$\frac{\delta W_{B}}{dm} = \left(\frac{p_{2}}{\rho} + \frac{\alpha_{2}\overline{v}_{2}^{2}}{2} + h_{2}g\right) - \left(\frac{p_{1}}{\rho} + \frac{\alpha_{1}\overline{v}_{1}^{2}}{2} + h_{1}g\right) + h_{\ell T} \quad (4)$$

$$\frac{\delta W_{B}}{dm} = (W_{s})_{B}$$
 (5)

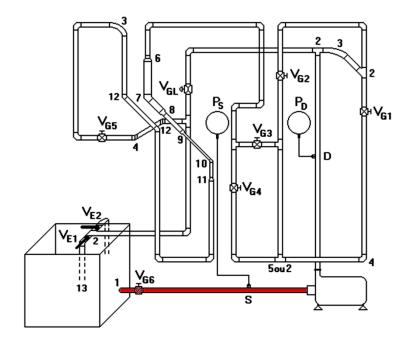
$$\left(\frac{p_1}{\rho} + \frac{\alpha_1 \overline{v}_1^2}{2} + h_1 g\right) - \left(\frac{p_2}{\rho} + \frac{\alpha_2 \overline{v}_2^2}{2} + h_2 g\right) = h_{\ell T} - (W_s)_B$$
 (6)


 $\alpha = 1$ (regime turbulento); $\alpha = 2$ (regime laminar)

Arranjo físico

PROCEDIMENTO EXPERIMENTAL

Escolher um determinado percurso.

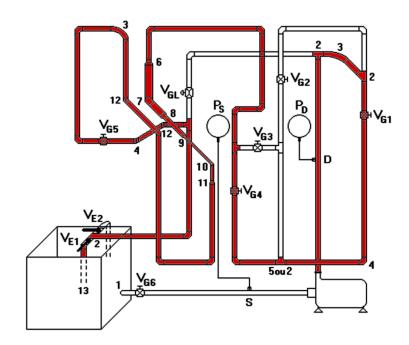


Diâmetros internos das tubulações

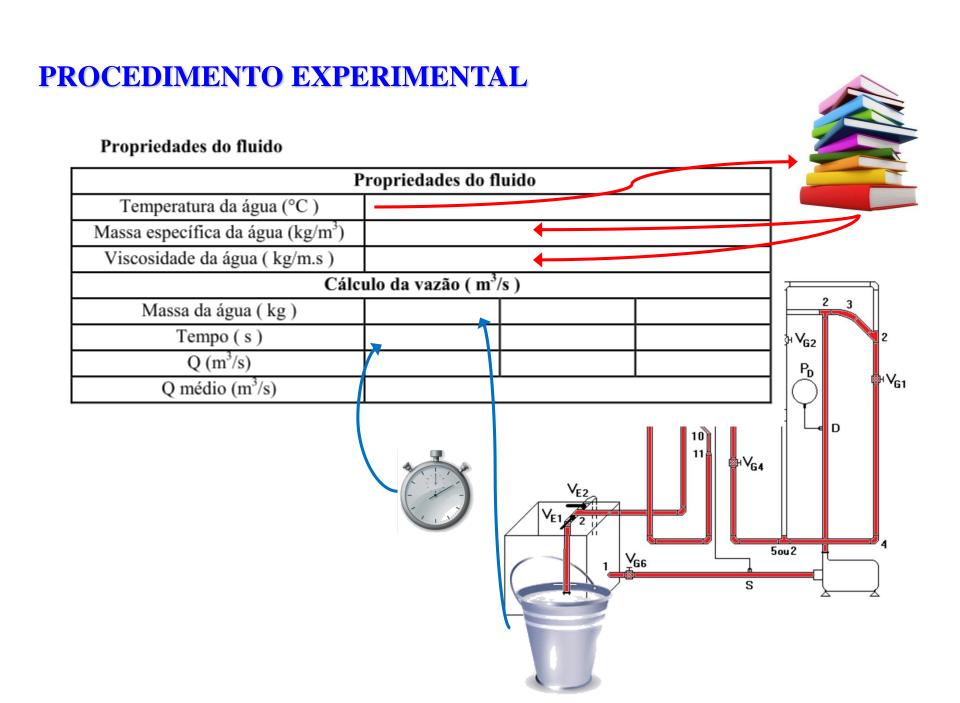
$$D_{(1/2")} = 0.013m$$
; $D_{(3/4")} = 0.019m$; $D_{(1")} = 0.025m$

PROCEDIMENTO EXPERIMENTAL

Calcular o comprimento equivalente na linha de sucção (tubo reto e acessórios).


Linha	de Sucção	
Acessórios em PVC	Le (m)	K (constante)
Entrada de borda de ¾"		
União de ¾"		
Acessórios em Metal	Le (m)	K (constante)
Registro gaveta aberto 3/4"	1	
Tubo reto na li	nha de sucção (m)	•
Diâmetro da tubulação: ¾"		
Le =		

PROCEDIMENTO EXPERIMENTAL


Linha de Recalque							
Acessórios em PVC	Le (m)	K (constante)					
União de ¾"							
Joelho 90° de ¾"							
Curva 90° de ¾"							
Joelho 45° de ¾"							
Joelho 45° de ½"							
Joelho 45° de 1"							
Luva de ¾"							
Tê passagem direta ¾"							
Tê passagem lateral ¾"							
Redução de 1" para ¾"							
Redução de ¾" para ½"							
Expansão de ¾" para 1"							
Expansão de ½" para ¾"							
Saída de canalização de ¾"							
Acessórios em Metal	Le (m)	K (constante)					
Registro gaveta aberto 3/4"							
Registro de esfera aberto 3/4"							

Registro de esfera aberto 3/4"									
Tubo reto na linha de recalque (m)									
Diâmetro da tubulação: 3/4"									
Le =									
Diâmetro da tubulação: 1"									
Le =									
Diâmetro da tubulação: ½"									

Le =

Calcular o comprimento equivalente na linha de recalque (tubo reto e acessórios).

EQUAÇÕES

Perda de carga total:

$$\mathbf{h}_{\ell\mathrm{T}} = \mathbf{h}_{\ell\mathrm{m}} + \mathbf{h}_{\ell}$$

Perda de carga distribuída:

$$h_{\ell} = f \frac{L}{D} \frac{\overline{v}^2}{2}$$

Perda de carga localizada:

$$h_{\ell m} = f \frac{L_e}{D} \frac{\overline{v}^2}{2}$$

$$h_{\ell m} = K \frac{\overline{v}^2}{2}$$

Número de Reynolds:

$$R_{e} = \frac{\rho \overline{v}D}{\mu} = \frac{\rho 4Q}{\mu \pi D}$$

$$\overline{\mathbf{v}} = \frac{4\mathbf{Q}}{\pi \mathbf{D}^2}$$

Vazão volumétrica:

$$Q = \frac{Volume\ coletado}{Tempo} = \frac{Massa\ da\ água\ coletado}{\rho_{água}\ .\ Tempo}$$

Potência na máquina motriz (Bomba):

Unidades: SI

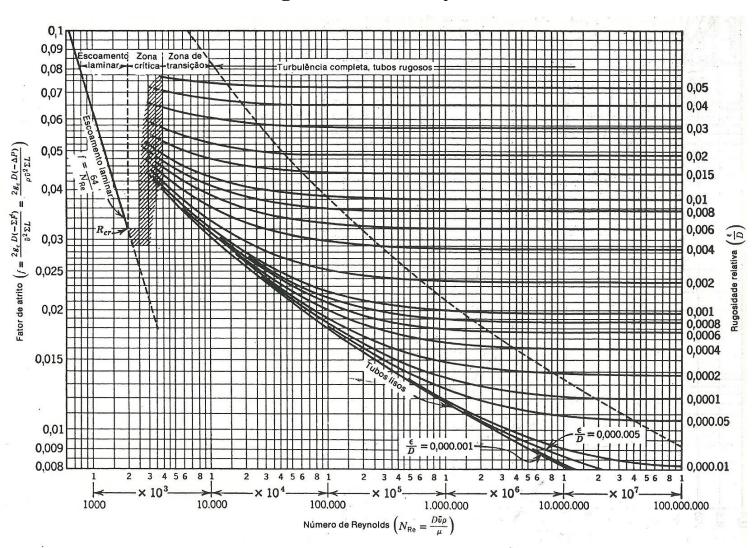
$$\begin{aligned} P_{m} &= \dot{m} |W_{s}| \equiv \left[Watt \right]; \quad W_{s} \equiv \left[\frac{m^{2}}{s^{2}} \right] \\ 1 \, hp &= 745,6 \, Watt \\ P_{m} &= \frac{\dot{m} |W_{s}|}{745,6} \equiv \left[hp \right]; \quad \dot{m} = \rho_{fluido}.Q \equiv \left[\frac{Kg}{s} \right] \end{aligned}$$

 ρ = massa específica do fluido (kg/m³)

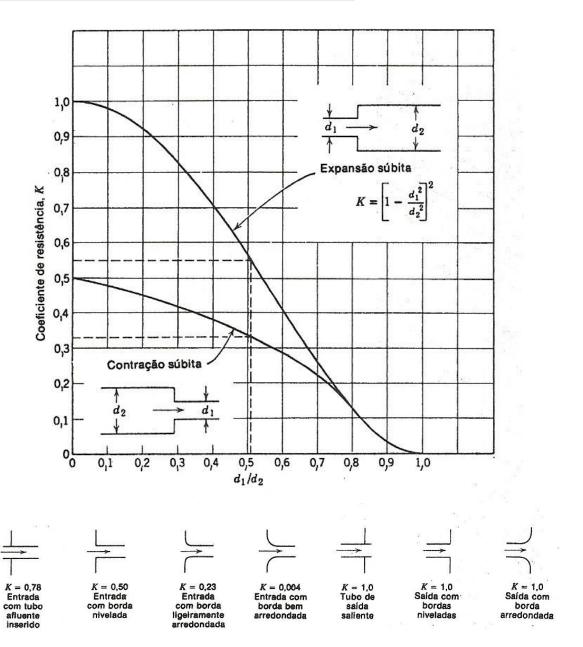
Q = vazão volumétrica do fluido (m³/s)

 $W_s = Trabalho no eixo (bomba) (m^2/s^2)$

Viscosidade e massa específica da água:


$$\mu_{agua} = \frac{1,78 \times 10^{-3}}{1 + 0,0337 \text{T} + 0,000221 \text{T}^2} \left[\frac{\text{kg}}{\text{m.s}} \right]$$

$$\rho_{agua} = 999,71704 + 0,07894 \times \text{T} - 0,00864 \times \text{T}^2 + 5,6752.10^{-5} \times \text{T}^3 - 1,94502.10^{-7} \times \text{T}^4 \left[\frac{\text{kg}}{\text{m}^3} \right]$$


$$\text{T} = \begin{bmatrix} {}^{\circ}\text{C} \end{bmatrix}$$

FIGURAS E TABELAS

Diagrama de Moody

Determinação do coeficiente de resistência, K:

Comprimentos equivalentes (L_e) a perdas de cargas localizadas em metros de canalização retilínea em PVC rígido ou cobre (NB-92).

	METRO	JOELHO	JOELHO 45°	CURVA 90°	CURVA 45°	TÊ 90° PASSAGEM DIRETA	TÊ 90° SAÍDA DE LADO	TÊ 90° SAÍDA BILATERAL	NORMAL	ENTRADA DE BORDA	SAÍDA DE CANALIZ.	VÁLVULA DE PÉ E CRIVO	VALV. RE	TIPO PESADO	REGISTRO GLOBO ABERTO	REGISTRO GAVETA ABERTO	REGISTR ÂNGULO ABERTO
DN mm	(Ref)	4					H		1								
15	(1/2)	1,1	0,4	0,4	0,2	0,7	2,3	2,3	0,3	0,9	0,8	8,1	2,5	3,6	11,1	0,1	5,9
20	(3/4)	1,2	0,5	0,5	0,3	0,8	2,4	2,4	0,4	1,0	0,9	9,5	2,7	4,1	11,4	0,2	6,1
25	(1)	1,5	0,7	0,6	0,4	0,9	3,1	3,1	0,5	1,2	1,3	13,3	3,8	5,8	15,0	0,3	8,4
32	(11/4)	2,0	1,0	0,7	0,5	1,5	4,6	4,6	0,6	1,8	1,4	15,5	4,9	7,4	22,0	0,4	10,5
40	(11/2)	3,2	1,3	1,2	0,6	2,2	7,3	7,3	1,0	2,3	3,2	18,3	6,8	9,1	35,8	0,7	17,0
50	(2)	3,4	1,5	1,3	0,7	2,3	7 6	7,6	1,5	2,8	3,3	23,7	7,1	10,8	37,9	0,8	18,5
60	(21/2)	3,7	1,7	1,4	0,8	2,4	7,8	7,8	1,6	3,3	3,5	25,0	8,2	12,5	38,0	0,9	19,0
75	(.3)	3,9	1,8	1,5	0,9	2,5	8,0	8,0	2,0	3,7	3,7	26,8	9,3	14,2	40,0	0,9	20,0
100	(4)	4,3	1,9	1,6	1,0	2,6	8,3	8,3	2,2	4,0	3,9	28,6	10,4	16,0	42,3	1,0	22,1
125	(5)	4,9	2,4	1,9	1,1	3,3	10,0	10,0	2,5	5,0	4,9	37,4	12,5	19,2	50,9	1,1	26,2
150	(6)	5,4	2,6	2,1	1,2	3,8	11,1	11,1	2,8	5,6	5,5	43,4	13,9	21,4	56,7	1,2	28,9

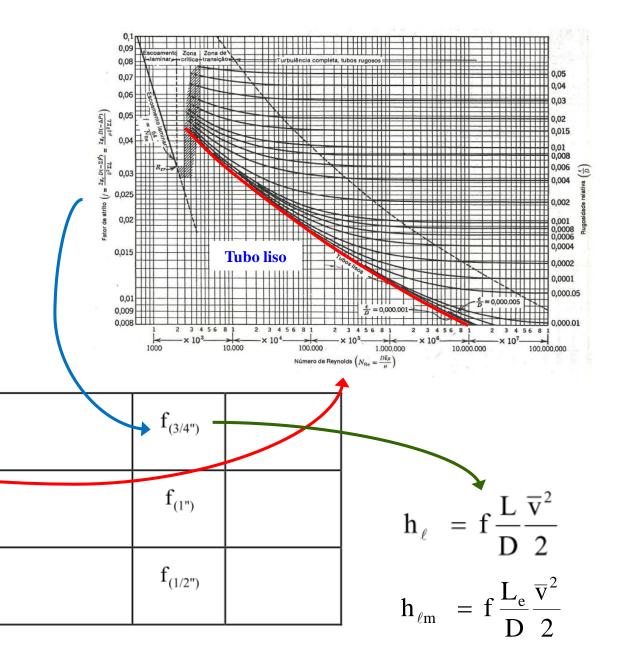
Fig. 1.25 Perdas de cargas localizadas — sua equivalência em metros de tubulação de PVC rígido ou cobre (NB-92).

Comprimentos equivalentes $(L_{\rm e})$ a perdas de cargas localizadas em metros de canalização retilínea em PVC rígido ou metal.

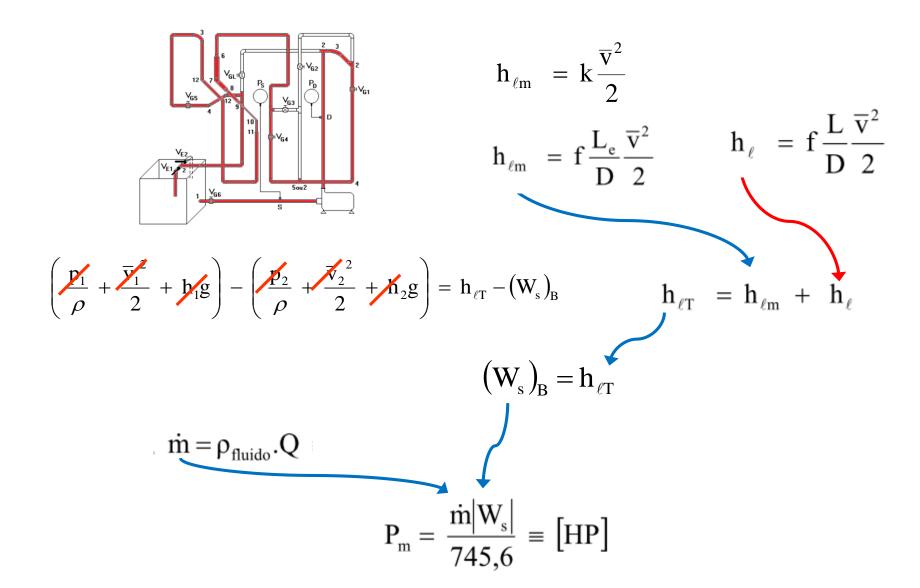
	OONEY I C		Diâmetro nominal X Equivalência em metros de canalização											
CONEXÃO		MATERIAL	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"	5''			
Curva 90°			PVC	0,5	0,6	0,7	1,2	1,3	1,4	1,5	1,6	1,9		
			Metal	0,4	0,5	0,6	0,7	0,9	1,0	1,3	1,6	2,1		
-		\Diamond	PVC	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1		
Curva 45°	15"	A	Metal	0,2	0,2	0,3	0,3	0,4	0,5	0,6	0,7	0,9		
			PVC	1,2	1,5	2,0	3,2	3,4	3,7	3,9	4,3	4,9		
Joelho 90°	90"		Metal	0,7	0,8	1,1	1,3	1,7	2,0	2,5	3,4	4,2		
10-	450	\wedge	PVC	0,5	0,7	1,0	1,3	1,5	1,7	1,8	1,9	2,5		
Joelho 45°	45		Metal	0,3	0,4	0,5	0,6	0,8	0,9	1,2	1,5	1,9		
Tê de p	assagem	£,	PVC	0,8	0,9	1,5	2,2	2,3	2,4	2,5	2,6	3,3		
direta			Metal	0,4	0,5	0,7	0,9	1,1	1,3	1,6	2,1	2,7		
Tê de saída lateral	aída		PVC	2,4	3,1	4,6	7,3	7,6	7,8	8,0	8,3	10,0		
			Metal	1,4	1,7	2,3	2,8	3,5	4,3	5,2	6,7	8,4		
Tê de saída bilateral	aída	A.	PVC	2,4	3,1	4,6	7,3	7,6	7,8	8,0	8,3	10,0		
	ıl	1	Metal	1,4	1,7	2,3	2,8	3,5	4,3	5,2	6,7	8,4		
União			PVC	0,1	0,1	0,1	0,1	0,1	0,1	0,15	0,2	0,25		
			Metal	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,04		
Saída d	le '		PVC	0,9	1,3	1,4	3,2	3,3	3,5	3,7	3,9	4,9		
canaliz	ação		Metal	0,5	0,7	0,9	1,0	1,5	1,9	2,2	3,2	4,0		
Luva d	e	F	PVC	0,3	0,2	0,15	0,4	0,7	0,8	0,85	0,95	1,2		
reduçã	o (*)		Aço	0,29	0,16	0,12	0,38	0,64	0,71	0,78	0,9	1,07		
Registr	o de gaveta		PVC	0,2	0,3	0,4	0,7	0,8	0,9	0,9	1,0	1,1		
ou esfe	era aberto	Ma	Metal	0,1	0,2	0,2	0,3	0,4	0,4	0,5	0,7	0,9		
Registi globo a		Ā	Metal	6,7	8,2	11,3	13,4	17,4	21,0	26,0	34,0	43,0		
Registro de ângulo aberto			Metal	3,6	4,6	5,6	6,7	8,5	10,0	13,0	17,0	21,0		
Válvula	de pé		PVC	9,5	13,3	15,3	18,3	23,7	25,0	26,8	28,8	37,4		
com crivo			Metal	5,6	7,3	10,0	11,6	14,0	17,0	22,0	23,0	30,0		
Válvula de Retenção	Horizontal	al_b	Metal	1,6	2,1	2,7	3,2	4,2	5,2	6,3	6,4	10,4		
Reter Valva		#	Metal	2,4	3,2	4,0	4,8	6,4	8,1	9,7	12,9	16,		

OBSERVAÇÕES:

a - Os valores acima estão de acordo com a NBR 5626/82 e Tabela de Perda de Targa da Tigre para PVC rígido e cobre, e NBR 92/80 e Tabela de Perda de Carga Tupy para ferro fundido galvanizado, bronze ou latão.

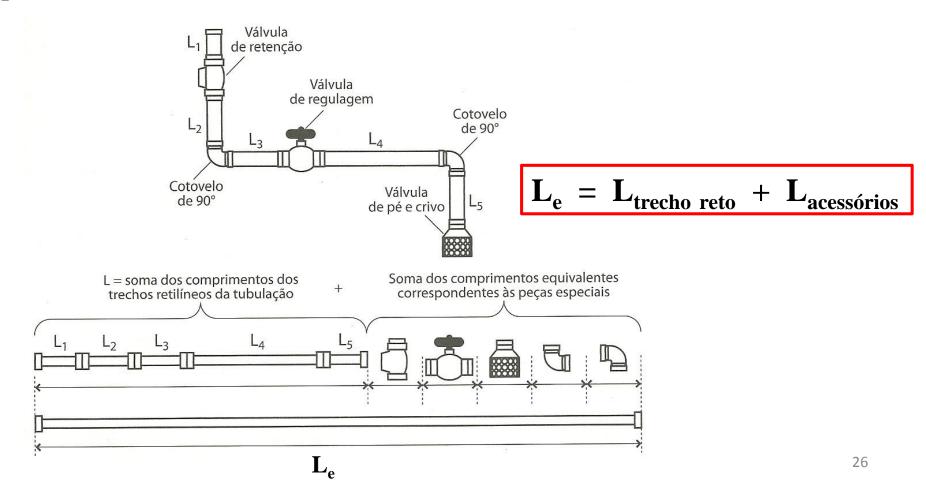

b - (*) Os diâmetros indicados referem-se à menor bitola de reduções concêntricas, com fluxo da maior para a menor bitola, sendo a bitola maior uma medida acima da menor.

CÁLCULOS


Propriedades do fluido

	P	ropriedade	s do fluido			
Temperatura d	a água (°C)					
Massa específica	da água (kg/m³)					
Viscosidade da a	igua (kg/m.s)					
	Cálci	ulo da vazã	o (m³/s)			
Massa da á	gua (kg)					
Tempo	(s)					2 3
Q (m	³ /s)					ր √ _{G2} 2
Q médio	(m^3/s)		1	_		P _D
Ρ - ρ	4Q		f		10	
$R_{e(3/4")} = \frac{\rho}{\mu \pi}$			f _(3/4")		11 Å PHV _{G4}	
$R_{e(1")} = \frac{\rho^2}{\mu \pi}$	<u>PQ</u> D _{1"}		f _(1")			5ou 2 4
$R_{e(1/2")} = \frac{\rho}{\mu \pi}$	4Q D _{1/2"}		f _(1/2")		s	

CÁLCULOS


CÁLCULOS

Determinação da perda de carga total (h_{fT})

Método do comprimento equivalente (L_e)

Define-se $L_{\rm e}$ como o comprimento de duto (fictício) no qual o fluxo sofre a mesma perda que no acidente, sob as mesmas condições; ou seja: é o comprimento de tubo que apesentaria perda de carga igual a do acessório em questão.

Linha de sucção (Tubulação de entrada da bomba)

Tubulação e Acessórios de ¾"

$$\begin{split} h_{sucção,3/4"} &= f_{3/4"} \frac{L_{e,3/4"}}{D_{3/4"}} \frac{\overline{V}_{3/4"}^2}{2} \\ L_{e,3/4"} &= L_{e(tubo\ reto)} + L_{e(acess\'orios)} \\ \overline{V}_{3/4"} &= \frac{4Q}{\pi D_{3/4"}^2} \rightarrow R_{e,3/4"} = \frac{\rho.\overline{V}_{3/4"}.D_{3/4"}}{\mu} \rightarrow f_{3/4"} \text{ (tubo\ liso)} \end{split}$$

Linha de recalque (tubulação de saída da bomba)

Tubulação e Acessórios de 1"

$$\begin{split} \mathbf{h}_{recalque,1^{"}} &= \mathbf{f}_{1^{"}} \frac{\mathbf{L}_{e,1^{"}}}{\mathbf{D}_{1^{"}}} \frac{\overline{\mathbf{v}}_{1^{"}}^{2}}{2} \\ \mathbf{L}_{e,1^{"}} &= \mathbf{L}_{e(\text{tubo reto})} + \mathbf{L}_{e(\text{acess\'orios})} \\ \overline{\mathbf{v}}_{1^{"}} &= \frac{4\mathbf{Q}}{\pi \mathbf{D}_{1^{"}}^{2}} \longrightarrow \mathbf{R}_{e,1^{"}} = \frac{\rho.\overline{\mathbf{v}}_{1^{"}}.\mathbf{D}_{1^{"}}}{\mu} \longrightarrow \mathbf{f}_{1^{"}} \text{ (tubo liso)} \end{split}$$

Linha de recalque (tubulação de saída da bomba)

Tubulação e acessórios de ¾"

$$h_{recalque,3/4"} = f_{3/4"} \frac{L_{e,3/4"}}{D_{3/4"}} \frac{\overline{v}_{3/4"}^2}{2}$$

$$L_{e,3/4^{"}} = L_{e(tubo reto)} + L_{e(acess \acute{o}rios)}$$

$$\overline{v}_{3/4''} = \frac{4Q}{\pi D_{3/4''}^2} \rightarrow R_{e,3/4''} = \frac{\rho.\overline{v}_{3/4''}.D_{3/4''}}{\mu} \rightarrow f_{3/4''} \text{ (tubo liso)}$$

Linha de recalque (tubulação de saída da bomba)

Tubulação e Acessórios de 1/2"

$$h_{recalque,1/2"} = f_{1/2"} \frac{L_{e,1/2"}}{D_{1/2"}} \frac{\overline{v}_{1/2"}^2}{2}$$

$$L_{e,1/2} = L_{e(tubo \, reto)} + L_{e(acess \acute{o}rios)}$$

$$\overline{v}_{1/2^{"}} = \frac{4Q}{\pi D_{1/2^{"}}^{2}} \rightarrow R_{e,1/2^{"}} = \frac{\rho.\overline{v}_{1/2^{"}}.D_{1/2^{"}}}{\mu} \rightarrow f_{1/2^{"}} \text{ (tubo liso)}$$

$$h_{recalque} = h_{recalque,1^{"}} + h_{recalque,3/4^{"}} + h_{recalque,1/2^{"}}$$

$$h_{\ell T} = h_{\textit{sucção}} + h_{\textit{recalque}}$$

RESULTADOS

- Apresentar o valor da perda de carga total para o arranjo escolhido.

- Apresentar o valor da potência calculada para a bomba centrífuga.